DECATHLON ${ }^{\text {M }}$ HC, DE, AND PG SYNTHETIC AIR COMPRESSOR LUBRICANTS

Decathlon ${ }^{\text {TM }}$ synthetic air compressor lubricants are manufactured from the finest synthetic hydrocarbon, diester and polyglycol fluids available. Decathlon ${ }^{\text {TM }}$ synthetic air compressor fluids impart excellent resistance to oxidation demanded by the sophisticated air systems manufactured today. Decathlon ${ }^{\text {TM }}$ synthetic fluids provide excellent low temperature characteristics while maintaining their stability at elevated temperatures.
The HC Series fluids are acceptable for specific type rotary screw, centrifugal and reciprocating compressors. They are formulated with PAO's (polyalphaolefins) base stocks.
The DE Series fluids are acceptable for specific type rotary and reciprocating compressors. They are formulated with diester base stocks.

The PG Series fluids are acceptable for specific type rotary compressors only. They are formulated with polyglycol base stocks.

Decathlon ${ }^{\text {TM }} \mathrm{HC}$ and DE are compatible with each other, and also with mineral oil. Decathlon ${ }^{\text {TM }}$ PG is compatible with Decathlon DE, but incompatible with Decathlon ${ }^{\text {TM }} \mathrm{HC}$ and mineral oil.

ASTM \#		TYPICAL CHARACTERISTICS						
	Product	HC-32	HC-46	HC-68	DE-68	DE-100	PG-46	PG-68
	ISO Grade	32	46	68	68	100	N/A	N/A
	SAE Grade	10W	20W	20	20	30	5W-20	10W-20
	AGMA Grade	N/A	1	2	2	3	N/A	2
D-445	Kinematic Viscosity cSt @ $40^{\circ} \mathrm{C}$ cSt @ $100^{\circ} \mathrm{C}$	$\begin{gathered} 32.1 \\ 6.1 \end{gathered}$	$\begin{gathered} 47.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 62.0 \\ & 10.0 \end{aligned}$	$\begin{gathered} 70.3 \\ 8.1 \end{gathered}$	$\begin{gathered} 107.2 \\ 10.9 \end{gathered}$	$\begin{gathered} 39.0 \\ 7.1 \end{gathered}$	$\begin{aligned} & 54.9 \\ & 9.32 \end{aligned}$
D-2161	Saybolt Viscosity SUS @ $100^{\circ} \mathrm{F}$ SUS @ 210ㅇ․	$\begin{gathered} 151 \\ 46 \end{gathered}$	$\begin{gathered} 220 \\ 52 \\ \hline \end{gathered}$	$\begin{gathered} 315 \\ 60 \end{gathered}$	$\begin{gathered} 306 \\ 52 \end{gathered}$	$\begin{gathered} 497 \\ 61 \end{gathered}$	$\begin{gathered} 199 \\ 49 \end{gathered}$	$\begin{array}{r} 279 \\ 57.7 \end{array}$
D-2270	Viscosity Index	150	146	146	96	86	134	153
D-97	Pour Point, ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	-65 (-54)	-55 (-48)	-55 (-48)	-40 (-40)	-30 (-34)	-55 (-48)	-50(-46)
Gardner Method	Density, lb/gal @ $60^{\circ} \mathrm{F}\left(15.5^{\circ} \mathrm{C}\right)$ Specific Gravity, g/cc @ $60^{\circ} \mathrm{F}\left(15.5^{\circ} \mathrm{C}\right)$	$\begin{gathered} \hline 7.19 \\ 0.863 \end{gathered}$	$\begin{gathered} 7.18 \\ 0.862 \end{gathered}$	$\begin{gathered} 7.31 \\ 0.878 \end{gathered}$	$\begin{gathered} \hline 8.08 \\ 0.940 \\ \hline \end{gathered}$	$\begin{gathered} 8.03 \\ 0.960 \\ \hline \end{gathered}$	$\begin{gathered} 8.12 \\ 0.985 \end{gathered}$	$\begin{aligned} & 8.007 \\ & 0.960 \end{aligned}$
D-92	Flash Point, ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$ Cleveland Open Cup	$\begin{gathered} 450 \\ (232) \\ \hline \end{gathered}$	$\begin{gathered} 475 \\ (246) \\ \hline \end{gathered}$	$\begin{gathered} 475 \\ (246) \\ \hline \end{gathered}$	$\begin{gathered} 465 \\ (241) \\ \hline \end{gathered}$	$\begin{gathered} 470 \\ (243) \\ \hline \end{gathered}$	$\begin{gathered} 480 \\ (249) \\ \hline \end{gathered}$	$\begin{gathered} 490 \\ (254) \\ \hline \end{gathered}$
D-4172	Four Ball Wear Scar Width, mm @ 40 kg	0.40	0.40	0.45	0.57	0.50	0.50	0.25
D-665	Rust Test, Distilled Water	Pass						
D-130	Copper Strip Corrosion $212^{\circ} \mathrm{F}\left(100^{\circ} \mathrm{C}\right) @ 3 \mathrm{hr}$	1A						
D-2155	Auto-Ignition Temp, ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \hline 730 \\ (387) \\ \hline \end{gathered}$	$\begin{gathered} 745 \\ (396) \\ \hline \end{gathered}$	$\begin{gathered} \hline 745 \\ (396) \\ \hline \end{gathered}$	$\begin{gathered} 765 \\ (407) \end{gathered}$	$\begin{gathered} 780 \\ (415) \\ \hline \end{gathered}$	$\begin{gathered} 750 \\ (398) \\ \hline \end{gathered}$	$\begin{gathered} 750 \\ (399) \\ \hline \end{gathered}$
D-943	Oxidation Test	NR	>10,000	NR	NR	NR	NR	NR

The above are average values. Minor variations which do not affect product performance are to be expected in normal manufacturing.
PACKAGING

Nonreturnable Totes	Drums	Pails

For warranty information, scan the QR code.
You can also email us at sales@whitmores.com Or write to the Sales Department at the address below.

